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Abstract

This lab report covers implicit surfaces and
their differential properties. The many forms
of quadric surfaces are discussed. Furtermore
some constructive solid geometry techniques
such as the union, intersection, and difference
operators, as well as super elliptic blending
techniques are discussed.

The implicit representation provides inter-
esting properties and the constructive solid
geometry operators together with for exam-
ple the quadric surfaces enable quite complex
shapes.

1 Background

Sometimes it can be beneficial to represent
surfaces in terms of mathematical functions
instead of as explicit triangle meshes. One
way of doing so would be to let one dimension
be a function of the others:

z = f (x, y). (1)

This is called an explicit representation.
Another way of representing surfaces by

mathematical functions is the implicit surface
representation—the topic of this lab. Let a
function

f (x)→ η, x ∈ R3, η ∈ R, (2)

i.e. map a 3-dimensional vector x = [x, y, z] to
a scalar. This function can be used to define
a surface in three dimensions by defining the

surface as all points where f has the same
value:

S(C) =
{
{x} : f (x) = C

}
(3)

where C is the iso-value. In computer graph-
ics, the iso-value is usually set to zero—this
way the sign of f can be used to determine if
a point is inside or outside the surface. Using
this convention, f can be defined such that

f (x)


< 0, if x is inside the surface
= 0, if x is on the surface
> 0, if x is outside the surface

(4)

To render the implicit surface using a tradi-
tional graphics pipeline, the function is sam-
pled in a grid, with the surface given as the in-
terface between the negative and positive val-
ues. For ray tracing, there are often better al-
ternatives. For example ray intersections with
quadric surfaces can be easily solved without
sampling the function.

For shading, surface normals are of utmost
importance. The normal of an implicit surface
is the normalized gradient

∇ f (x) =
[

∂ f (x)
∂x

∂ f (x)
∂y

∂ f (x)
∂z

]T
. (5)

As known, the partial derivative, with respect
to x, at a point, x0, is defined as

∂ f (x0)

∂x
= lim

h→0

f (x0 + hêx)− f (x0)

h
. (6)

When calculating the derivative in applica-
tions, h can not be arbitrarily small. The
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derivative can however be approximated by a
finite difference by choosing a small enough
constant, ε, instead of h → 0, resulting in a
forward difference scheme. Nonetheless, it is
often more accurate to evaluate the derivative
as a central difference

Dx(x0) =
f (x0 + εêx)− f (x0 − εêx)

2ε
(7)

which approximates the derivative in a sym-
metric way. Dy and Dz are naturally calcu-
lated in the same way as Dx. Then the gradi-
ent can be calculated as

∇ f (x) ≈
[
Dx(x) Dy(x) Dz(x)

]T (8)

and the surface normal for a point x on the
surface can be calculated as

n̂(x) =
∇ f (x)
‖∇ f (x)‖ (9)

One type of implicit surface is the quadric
surface, and its function is defined as

f (x, y, z) = Ax2 + 2Bxy + 2Cxz

+ 2Dx + Ey2 + 2Fyz

+ 2Gy + Hz2 + 2Iz + J

= pTQp

(10)

where pT = [x, y, z, 1] and the matrix is

Q =


A B C D
B E F G
C F H I
D G I J

 . (11)

The matrix form pTQp = 0 in particular,
is convenient for computer graphics. The
quadric in its general form is quite flexible,
and by enforcing certain constraints on the
values of Q, it can describe a lot of different
shapes. Some examples of surfaces that can
be represented as a quadric are listed below.

• Planes: ax + by + cz = 0

• Cylinders: x2 + y2 − 1 = 0

• Ellipsoids: x2

a2 + y2

b2 + z2

c2 − 1 = 0

• Cones: x2 + y2 − z2 = 0

• Paraboloids: x2 ± y2 − z = 0

• Hyperboloids: x2 + y2 − z2 ± 1 = 0

What values should be in the matrix Q for
the different surface types can be easily seen
by comparing the equations with (10). For
example, the plane gives 2D = a, 2G = b,
2I = c, and the rest of the elements are zero.
Thus the quadric matrix of the plane, ax+ by+
cz = 0, is

Qplane =


0 0 0 a/2
0 0 0 b/2
0 0 0 c/2

a/2 b/2 c/2 0

 (12)

The analytic expression of a quadric’s gra-
dient is known and can be written as

∇ f (x, y, z) = 2Qsubp (13)

where Qsub ∈ R3×4 is the first three rows
of the quadric matrix Q. This expression is
well-suited for calculations, and eliminates
the need for the approximate gradient given
by (8) when working with quadric surfaces.

On their own, simple implicit functions are
usually not all that interesting, but many ob-
jects can be combined using boolean opera-
tions in what is known as constructive solid
geometry, to achieve more complex shapes.
The boolean operations union, intersection,
and difference, between two implicit surfaces,
A and B, can be calculated as

fA∪B(x) = min
(

fA(x), fB(x)
)

(14)

fA∩B(x) = max
(

fA(x), fB(x)
)

(15)

fA−B(x) = max
(

fA(x),− fB(x)
)

(16)

The intuition for this can be realized by observ-
ing Figure 1. Take for example the intersection
operator—by taking the maximum of fA and
fB, the result is negative only at points where
both fA and fB are negative, i.e. at points that
are inside both A and B. The result is positive
for points where at least one of the functions
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(a) The initial objects (b) A ∪ B

(c) A ∩ B (d) A− B

Figure 1: The boolean operations illustrated in 2D.

are positive. The surface is, as defined, the
interface between these regions, i.e. where the
value is zero. Similar reasoning can be applied
to the other operators.

While the edges created by the boolean op-
erations are continuous, their derivatives are
not; this creates problems when defining the
surface normal at these points. It would be
beneficial to be able to “smoothen” the sur-
face at these points. The following paragraph
explains how this can be done.

The surface representation can be trans-
formed to a density function

DA(x) = exp(− fA(x)). (17)

As a consequence of the way the implicit sur-
face function is defined, the inside and outside
of the surface represented as a density func-
tion is defined as

DA(x)


> 1, if x is inside the surface
= 1, if x is on the surface
∈ [0, 1), if x is outside the surface

(18)
To obtain the implicit surface from the density
function, the inverse of (17) is used:

fA(x) = − ln DA(x). (19)

With this knowledge, operations can be per-
formed on the density function as opposed
to the implicit surface function, f (x). An
interesting application of this is the super-
elliptic blending—a “smoother” version of the

(a) The seperate objects (b) Union

(c) Intersection (d) Difference

Figure 2: The results of the boolean operators on
two spheres shown as wireframes.

boolean operations. The density functions for
super-elliptic blending operations at a point
are defined by

DA∪B =
(

Dp
A + Dp

B

)1/p
(20)

DA∩B =
(

D−p
A + D−p

B

)−1/p
(21)

DA−B =
(

D−p
A + D−p

−B

)−1/p
(22)

As p approaches infinity, the results of these
operations approach the plain boolean opera-
tions defined in (14)–(16). Smaller p produces
smoother edges.

2 Results

This section presents the results of the lab.

2.1 CSG Operators

The results of applying the boolean operations
to two spheres is shown in Figure 2. Note the
sharp edges between the different parts.
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(a) Plane (b) Cone

(c) Cylinder (d) Ellipsoid

(e) Hyperboloid (f) Paraboloid

Figure 3: Different quadric surfaces. Note that the
surfaces are only sampled inside the box.

2.2 Quadric Surfaces

Figure 3 shows some examples of wildly dif-
ferent surfaces that are all represented by
quadrics. As a consequence of the rendering
technique, the surfaces are only rendered in-
side a bounding box. Most of the surfaces do
however extend infinitely.

2.3 Discrete Gradient Operator

Figure 4 shows the effects of the step size ε
on the discrete gradient operator. As seen
a smaller ε produces a gradient that follows
the curvature of the surface, but larger steps
produces gradients that are almost parallel
over the whole surface.

(a) ε = 0.01

(b) ε = 0.51

(c) ε = 1

Figure 4: The discrete gradient operator (8) using
different ε.

4



(a) p = 3 (b) p = 5

(c) p = 10 (d) p = 100

Figure 5: Super-elliptic blending of two spheres
using different values for p.

2.4 Super-Elliptic Blending

The results of applying super-elliptic blend-
ing with the union operator for two spheres
are shown in Figure 5. Different values for
the blending parameter, p, are compared to
demonstrate its effect. The super-elliptic in-
tersection and difference operators produced
smoother edges in the same way as the super-
elliptic union operator, albeit on convex edges.

3 Conclusion

Representing surfaces by implicit functions
provides some interesting properties. As op-
posed to a triangle mesh, the implicit repre-
sentation provides a representation with in-
finite resolution. For a traditional hardware
graphics pipeline, however, the surface has to
be triangulated before rendering, somewhat
negating the usefulness of this property. It
does however still mean that the full resolu-
tion representation can be sampled to a suit-
able resolution when needed.

3.1 CSG Operators

The boolean operations provide a simple but
powerful way to make interesting compound
objects from simpler objects. A drawback is
that sharp edges are created, which can be
unwanted.

3.2 Quadric Surfaces

As seen, quadric surfaces can represent a wide
variety of different surfaces. The shapes are
undeniably simple but when combined with
the CSG operators, many interesting shapes
can be represented.

The quadric surfaces also provide a useful
way of calculating the gradient, that does not
depend on any finite difference method.

3.3 Discrete Gradient Operator

The smaller step sizes produce better results.
As ε decreases, the gradient is evaluated in an
increasingly localized area around the point,
which provides a better result. When ε is large,
the two points, x0 + εêx and x0− εêx, are both
located far away from the point x0 where the
gradient is evaluated—this means that local
changes are not catched.

3.4 Super-Elliptic Blending

As shown, the super-elliptic blending is an
effective method for performing boolean op-
erations without the sharp edges. It is clear
that smaller values for p produce smoother
edges, and larger p produces sharper edges,
but other than that it can be hard to know
exactly what the resulting shape will be.

Lab Partner and Grade

The lab was done together with Viktor Sjögren.
All lab tasks marked 3, 4, or 5b were finished,
and the report aims for grade 5.
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