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Abstract

This report covers the theory behind uniform
B-splines and how they are used to derive sub-
division curves. Furthermore, Loop’s subdivi-
sion scheme for triangle meshes is covered. A
simple scheme for keeping sharp edges when
refining objects is also presented. The subdi-
vision schemes described refined the curves
and surfaces with satisfactory result. The opti-
mization of the B-spline evaluation decreased
the number of calculations significantly while
keeping the result intact.

1 Background

Mathematically representing smooth curves
and surfaces is highly interesting for many
applications, for example when modeling sur-
faces. This is typically done using splines.

A spline curve in n dimensions is repre-
sented as a parametric function

f : R→ Rn (1)

One spline that is highly interesting for the
field of computer graphics is the B-spline. This
lab narrows the scope and covers the cardinal
B-splines: B-splines with equidistant knots.
The curve parameter, t, is subdivided into in-
tervals between the knots given by ti = ih
where h is the constant step size. The points
on the curve are then given by

P(t) = ∑
i

ci Nn
i (t) (2)

where ci are the control points, Nn
i are the B-

splines, and n is the B-spline order and is one
higher than the polynomial order.

The first order B-spline is a piecewise con-
stant function with limited support:

N1
i (t) =

{
1, if i ≤ t/h < i + 1
0, otherwise

(3)

Higher order B-splines can be constructed re-
cursively from lower order ones using the
Cox–de Boor algorithm:

Nn
i (t) =

t− ti
ti+n − ti

Nn−1
i (t)

+
ti+1−1 − t

ti+1−1 − ti+1
Nn−1

i+1 (t)
(4)

For example, the fourth order B-spline with
i = 0 is given by

N4
0 =

1
6



(t + 2)3, −2 < t < −1
−3(t + 1)3 + 3(t + 1)2 + 3(t + 1) + 1, −1 ≤ t < 0
3t2 − 6t2 + 4, 0 ≤ t < 1
−(t− 1)3 + 3(t− 1)2 − 3(t− 1) + t, 1 ≤ t < 2
0, otherwise

(5)

The sum in (2) can be evaluated for the
entire range of i, but when evaluating curve
points in practice this is ineffective. Since Nn

i
is only non-zero in a small range, the sum only
needs to be evaluated for a small range of i.
For N4

i the evaluation is done for i between

start = btc+ 1
end = btc+ 2

(6)

The floor operation can be simply performed
as a static cast<size t> of the floating
point number t.
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As shown by Zorin and Schröder [1], B-
splines are subdividable according to the fol-
lowing formula

Nn
i (t) =

1
2n−1

n

∑
l=0

(
n
l

)
Nn

i (2t− l) (7)

where (
k
m

)
=

k!
m!(k−m)!

. (8)

What this means is that the a B-spline can be
constructed as a linear combination of shifted
and compressed copies of itself.

Since the basis changes, the control points,
ci, does as well. To find the new ones, the sum
in (2) can be rewritten in vector form:

P(t) = Nn(t)C,

Nn(t) =
[
Nn

0 (t) Nn
1 (t) · · · Nn

k (t)
]

,

C =


c0
c1
...

ck

 .

(9)

Using this form, the refinement coefficients
can be put in a matrix, S, giving

Nn(t) = Nn(2t)S (10)

and with (9):

P(t) = Nn(t)C = Nn(2t)SC (11)

and by extension,

Cj+1 = SCj (12)

where the subscript denotes the number of it-
erations. The subdivision matrix for B-splines
of order 4 (and for others as well) can be ob-
tained from the coefficients given by (7), ex-
cept at the boundaries which are given by

1
0.5 0.5

. . .
0.5 0.5

1

 (13)

as described by [2]. So the subdivision matrix
for B-splines of order 4 for a curve with five
points, takes the form

S =
1
8



8 0 0 0 0
4 4 0 0 0
1 6 1 0 0
0 4 4 0 0
0 1 6 1 0
0 0 4 4 0
0 0 1 6 1
0 0 0 4 4
0 0 0 0 8


. (14)

This can then be reduced to this simple proce-
dure: For each subdivision step, a new point
is inserted in between each of the old points;
the new points and the new positions of the
old points are given by

c′i =
1
8
(ci−1 + 6ci + ci+1)

c′i+ 1
2
=

1
8
(4ci + 4ci+1)

(15)

where ci are the old points. The boundary
conditions are given by

c′0 = c0

c′end = cend
(16)

It can be shown that in the limit, the subdi-
vision is smooth, convergent, and invariant
under affine transformations.

Generating a smooth model from a coarse
one is useful in many contexts, for example
when creating models. One way to do so for
triangle meshes is Loop’s subdivision algo-
rithm [3] which is partly based on the proper-
ties of B-spline curves. The algorithm works
by subdividing all triangles into four new
ones, as seen to the left in Figure 1. The po-
sition of the new vertices as well as the pre-
existing ones are calculated as a weighed av-
erage of the nearby vertices according to the
weights in Figure 1. As proposed by Hoppe et
al. [4], the weights β are calculated as

β =


3
8k

, k > 3

3
16

, k = 3

(17)
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Triangle subdivision Weights for new vertices

3/83/8

1/8

1/8

Weights for existing vertices

1− kββ

β

β β

β

Figure 1: Description of how triangles are subdivided in Loop’s subdivision algorithm. Red vertices are
new, and blue vertices are pre-existing.

where k is the valence (number of incident
edges) of the vertex.

It is not always necessary or even desirable
to subdivide every single triangle in a mesh;
some parts might for example be less visible
and thus not need a resolution as high as other
parts of the mesh.

Another situation that can motivate an
adaptive subdivision scheme, is the subdivi-
sion of meshes with sharp edges mixed with
smoother surfaces. It is most likely desirable
to keep the sharp edges, while letting the
smoother surfaces be subdivided. A simple
way to achieve this is to begin with calculat-
ing the cosine of the angle between the current
face and all of the neighboring faces (indexed
by j),

cos θj = n̂ · n̂j (18)

where n̂ is the normal of the current face, and
n̂j is the normal of the neighboring face. To de-
cide if the face is subdividable, the following
rule is used

subdividable =

{
no, if cos θmax < α

yes, otherwise
(19)

where α is some threshold value chosen such
that edges are preserved without preventing
the subdivision of other parts. We used the
threshold α = 0.2.

It should be noted that when not all faces
are subdivided, the neighboring faces can not
be subdivided in the same way as before.

2 Results

The results of the lab are presented here.

2.1 Curve Subdivision

The subdivision curve is demonstrated in Fig-
ure 2. The curve converges quite quickly to-
wards the analytical curve shown in Figure 4
since the number of subdivisions grows expo-
nentially with the number of subdivisions.

2.2 Mesh Subdivision

Loop’s subdivision scheme is demonstrated
in Figure 5. Since each triangle is subdivided
into four new ones every iteration, the num-
ber of triangles grow rapidly, increasing the
smoothness as well as the memory require-
ments. As mentioned earlier, adaptive subdi-
vision schemes could be used to decrease the
number of faces in areas where they are un-
necessary, but to what extent this can be done
is highly dependent of the model as well as
the context considered.

2.3 Localization of the B-Spline
Curve Evaluation

The localization of the B-spline curve evalua-
tion was tested on the curve shown in Figure 4.
Before implementing the localization, 4000 B-
spline evaluations were performed; with the
localization, this number was halved, to 2000
evaluations.
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(a) 1 subdivision. (b) 2 subdivisions. (c) 3 subdivisions.

Figure 2: Demonstration of the subdivision curve. The initial curve is blue.

(a) Original model. (b) 3 iterations without edge triangles. (c) 3 iterations with edge preservation.

Figure 3: Comparison between the edge preservation technique and no edge preservation.

Figure 4: The corresponding analytical curve (red)
to Figure 2.

For a curve with more knots, the improve-
ment would be even more significant. This
can be shown by realizing that after the opti-
mization, the number of evaluations needed
for each point at the curve no longer depends

on the number of knots—this is in contrast
with the naı̈ve implementation where it grows
linearly with the number of knots.

2.4 Edge Preservation

The edge preservation scheme is shown in
Figure 3. As seen, the pyramid changes
shape drastically without the edge preserva-
tion. With the edge preservation, however the
the shape is preserved while still smoothing
the rest of the elements.

Some artifacts can however occur. Further-
more, flat surfaces are subdivided using this
scheme, to no visual benefit.

3 Conclusion

B-splines provide a useful mathematical foun-
dation for curves as well as surfaces.
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The curve subdivision provides a good ap-
proximation of the analytical B-spline after
only a few iteration.

The Loop subdivision scheme smoothens a
surface with good result, but the number of
faces increases rapidly as a consequence.

By localizing the evaluation of the curve,
less computer resources are needed, yet the
resulting curve is identical.

The simple edge preservation scheme used
works, but more sophisticated schemes could
probably provide better results.

Lab Partner and Grade

The lab was done together with Viktor Sjögren.
All lab tasks were finished and the report aims
for grade 5.
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(a) Original model.

(b) 1 iteration.

(c) 2 iterations.

Figure 5: Loop’s subdivision scheme applied to a
model of a cow.
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