
L A B R E P O R T : L A B 1
TNM079, MODELING AND ANIMATION

Algot Sandahl
algsa119@student.liu.se

Tuesday 13th April, 2021

Abstract

This lab report describes the tasks and results
from lab 1 in the course TNM079, Modeling
and Animation at Linköping University. The
topic of the lab was the half-edge data struc-
ture. The adjecency information was used
to calculate vertex normals, curvature, sur-
face area, volume, genus and the number
of shells. The performance improvements
when making neighborhood-dependent calcu-
lations were found to be large when compared
with a “polygon-soup” model. Additionally,
different curvature measures were compared.

1 Background

The most obvious way to store a triangle
model is to simply store a list of faces where
each face is made up of three vertices. In
some applications, for example rendering, this
works fine. The problem presents itself when
trying to perform operations that depend on
the surroundings of a vertex, or face, for ex-
ample when calculating vertex normals based
on the surrounding faces. This information
does not exist in such a structure, and to find
neighbors, all possible candidates might have
to be tested. This way of storing models is
often called “polygon soup”, since there is no
structure to the polygons.

One way to store adjacency information in
a model is the well-known half-edge data struc-
ture. This lab report covers a few of the opera-
tions enabled by the half-edge data structure.
The half-edge data structure gets its name

from the fact that each edge in the model is
stored as two half-edges. In its simplest form,
the a half-edge model can be described by:

• Vertex—x, y, and z coordinates, and a
pointer to a neighboring half-edge

• Face—a pointer to one of the half-edges
of the face.

• HalfEdge—a pointer to the vertex at the
start of the edge, next, prev, and pair
pointers, and a pointer to the face it is
part of.

• Mesh—Lists of the above structures.

It is often interesting to find the neighboring
vertices and faces of a vertex. The neighbor-
ing vertices—the 1-ring—of a vertex can be
found by following the edge pointer of the
vertex. The direction of the half-edge given
by this operation is pointing out from the ver-
tex, which means that the vertex pointer of
the edge points back to the original vertex.
To access a neighbor vertex, the prev pointer
of the edge is used. Then a half-edge point-
ing inwards is obtained, containing a pointer
to a neighboring vertex. Then the rest of the
vertices are found by iterating around the ver-
tex; each step consists of following the pair-
followed by the prev-pointer. The process is
illustrated in Figure 1. The processing of find-
ing the neighboring faces is the same with the
exception that the face pointer of the edge is
used instead of the vertex pointer.

Vertex normals can be calculated in many
ways. This lab uses one called mean weighted

1

prevprev

pair

Figure 1: An illustration of the traversal of neighbor-
ing vertices. The green arrows represent half-edges,
and the dashed lines represent pointers used to
traverse the neighborhood.

equally and is, as the name implies, simply the
normalized sum of all adjacent faces’ normals.
The face normals are given by

n̂ =
n
‖n‖ , n = (v2 − v1)× (v3 − v1) (1)

where v1, v2, and v3 are the face vertices.
The adjecency information can also be used

to calculate the surface area of a model. The
surface area is simply given by

AS = ∑
i

A(fi) (2)

where A(fi) is the area of the face fi, and the
summation is done over all faces. Further-
more the area of each face is given by

A =
‖(v2 − v1)× (v3 − v1)‖

2
. (3)

Finding the volume of the mesh is not as
straight-forward as finding its area, but it can
be shown that it can be calculated according
to

V =
1
3 ∑

i∈S

(v1 + v2 + v3) fi

3
· n̂(fi)A(fi) (4)

Figure 2: A simple example showing the principle
behind the volume calculation. Green elements
meet the object where the surface normal points
away from the origin; the opposite is the case for
the red elements.

where n̂(fi) is the face normal of the ith face,
A(fi) is the area of the ith face (given by (3)),
and the fraction inside the sum is the mid-
point of the face, fi.

This can be interpreted as the sum of singed
volume elements. Each volume element is a
tetrahedron with one vertex at the origin and
the other three given by the face of the surface.
The volume of a tetrahedron is given by

Vtetra =
Abaseh

3
(5)

where Abase is the area of the base, and h is the
height form the base to the apex. The choice
of base is arbitrary, but in this case it is the
selected face of the mesh.The height, h, can be
obtained as the dot product between the face
normal and a vector starting at the origin and
pointing to a point at the face. In this case the
middle point, (v1 + v2 + v3) fi

/3, is used. The
dot product also has the effect that if the nor-
mal is pointing in the opposite direction of the
vector emanating from the origin, the result
becomes negative. By summing these signed
volume elements, the volume of the mesh is
obtained. This is examplified by Figure 2.

The smoothness of a surface at a point can
be quantified by different types of surface cur-
vature measures. The two most prevalent
types of curvature are Gaussian curvature and
mean curvature. Both are defined in terms of
principal curvatures, κ1 and κ2. The principal
curvatures are the minimum and maximum
curvatures found among all possible normal
planes at the given evaluation point.

The Gaussian curvature is defined as

K = κ1κ2 (6)

2

but since this equation has no obvious imple-
mentation, this equation is used instead:

K =
1

AN

2π − ∑
j∈N1(i)

θj

 (7)

where AN is the area of the adjacent faces, θj
is defined in Figure 3, and N1(i) is the 1-ring
neighborhood of the evaluation point. On a
flat surface, the sum is naturally 2π since the
all the angles live in one plane; this results
in a curvature of zero, which makes intuitive
sense.

The other curvature measure, the mean cur-
vature, is useful since it can be used to distin-
guish between concave and convex curvature,
unlike the Gaussian curvature. It is defined as

H =
κ1 + κ2

2
. (8)

and can be calculated for a triangle model as

H =

∥∥∥∥∥∥ 1
4AN

∑
j∈N1(i)

(cot αj + cot β j)(vi − vj)

∥∥∥∥∥∥
(9)

where the vectors and angles in the equation
are defined by Figure 3.

The estimates provided by (7) and (9) can
both be improved by replacing the area, AN ,
with the Voronoi area:

Av =
1
8 ∑

j∈N1(i)
(cot αj + cot β j)

∥∥vi − vj
∥∥2 .

(10)
The genus of a mesh is a topological quantity,

that in some sense can be seen as the number
of holes of a surface. To calculate the genus,
G, of a mesh, the Euler–Poincaré formula can
be used:

G = S− V − E− L + 2F
2

(11)

where S is the number of shells, V is the num-
ber of vertices, E is the number of edges, F is
the number of faces, and L is the number of
loops. The number of edges, E, in a half-edge
mesh are half as many as the number of half-
edges. In a triangle mesh, each triangle forms

θ

α
βj

j

j

vj

vi

Figure 3: Angles used in curvature calculations.

exactly one loop; consequently, the number of
loops, L, is the same as the number of faces, F.

The number of shells, S, of a mesh can be
found by starting at a vertex and iteratively
tagging all vertices that could be reached. If
unvisited vertices remains, a new starting
point out of the unvisited vertices is chosen
and the procedure is restarted. This is done
until all points have been visited. The number
of shells is then given by the number of times
a point from the unvisited nodes had to be
chosen (including the first one).

2 Results

The results of the lab are presented in this
chapter. The performance measurements were
done on an 8-core M1 MacBook Air with 16 GB
of RAM.

2.1 Surface Normals

Figure 5 shows a comparison between the ver-
tex normals and the face normals. As seen,
the vertex normals can be used with Gouraud
shading to provide a much more natural look
for smooth areas, see for example the donut.
As demonstrated by the pyramid, sharp edges
are not handled well; the face and vertex nor-
mals for a pyramid are visualized directly in
Figure 5c. The averaging of the face normals
implicitly assumes that the surface should be
smooth.

3

Figure 4: The models used to measure normal cal-
culation times.

Table 1: Time taken to calculate vertex normals for
HalfEdgeMesh and SimpleMesh mesh. The times
are given in milliseconds.

Model Vertices HalfEdge

time
Simple

time

cow 2,903 3 121
bunny medium 35,034 45 16,564

The performance of the vertex normal oper-
ation is drastically improved when compared
to the SimpleMesh implementation, as seen in
Table 1. The models used are shown in Fig-
ure 4.

2.2 Surface Curvature

Comparisons between different curvature
measures can be found in Figure 6. They are
all shown on a unit sphere.

2.3 Surface Area and Mesh Volume

The volume and surface area of perfect
spheres are well-known, so they are suitable
for comparisons. Table 2 show the calculated
areas and volumes for two different spheres.

The volume calculations were also tested
using different points on the face, i.e. with
(v1 + v2 + v3) fi

/3 in (4) replaced with one
of the vertex points: v1, v2, or v3. The dif-
ferent expressions all produced the same re-

(a) Flat shading, using the face normals.

(b) Gouraud shading using the calculated vertex normals.

(c) Face normals (red), and vertex normals (green).

Figure 5: A demonstration of the difference between
face normals and the implementation of vertex nor-
mals described in this report.

sults: 4.15192 for the sphere with radius 1, and
0.0534869 for the cow model.

2.4 Topology

The genus and shell calculations were tested
on three different models: a sphere, a donut,
and the model genus test shown in Figure 5a.
The number of shells calculated was 1 for the
sphere and the donut, and 4 for genus test.
The calculated genus was 0 for the sphere, 1
for the donut, and 3 for genus test.

4

Table 2: Calculated areas and volumes compared with the exact values for perfect spheres.

Model Radius Vertices Calc. area Calc. volume Exact area Exact volume

sphere 0.1 0.1 994 0.12511 0.0041519 0.04π ≈ 0.12566 4
3 π0.13 ≈ 0.0041887

sphere 1.0 1 994 12.511 4.15192 4π ≈ 12.56637 4
3 π ≈ 4.18879

(a) Gaussian curvature,
[0.252891, 0.504374]

(b) Mean curvature,
[0.128677, 1.86172]

(c) Gaussian curvature with
voronoi, [0.996891, 1.00619]

(d) Mean curvature with
voronoi, [0.997823, 1.00227]

Figure 6: Comparison between different curvature
measures. The extent of the values over the entire
surface is used to specify the range of the color
scale, and is provided in the caption. The model
used is a unit sphere, so curvature should be one.

3 Conclusion

The half-edge mesh trades some memory effi-
ciency for efficiency when it comes to finding
the neighboring vertices or faces.

3.1 Surface Normals

The normal calculation times, as seen in Ta-
ble 1, are drastically improved for the half-
edge data structure, especially when the num-
ber of vertices is high. This clearly exam-
plifies the effects of the adjacency informa-
tion; all adjecent vertices and faces are eas-
ily reached through just a few pointers. In
the SimpleMesh implementation, a full search
through all vertices has to be done for each

vertex, massively increasing the runtime.

3.2 Surface Curvature

The usage of the Voronoi area, divides the
mesh into non-overlapping surface patches,
and provide a highly significant improvement
to the curvature estimates. The estimates cal-
culated with the full area of the neighboring
faces provide a very poor result, both in terms
of deviation from the true value, and in terms
of inconsistency over the surface area.

3.3 Surface Area and Mesh Volume

It is worth noting that the since the sphere
models are made up of triangles, they do not
actually have the exact same area and volume
as a perfect sphere. Thus it makes sense that
the calculated values deviate from those of a
perfect sphere.

The volume calculation using different eval-
uation points in the calculation provides the
same results. This makes sense since the
length of the projection of the position vec-
tor onto the normal, should produce the same
results, as the position vector always points
at the triangle face, which is orthogonal to the
normal.

3.4 Topology

The shell and genus calculations worked as
expected.

Lab Partner and Grade

The lab was done together with Viktor Sjögren.
All lab tasks were finished and the report aims
for grade 5.

5

