
TNM084 — Procedural Methods for Images

Procedural Planet Generation
Algot Sandahl1

Abstract
This report describes how layered noise functions can be used to procedurally generate and render a miniature
planet in real-time on the web. Topics covered include terrain generation, starry sky generation, and simple ways
to render water, clouds, and atmosphere.

Links
Application: https://pannacotta98.github.io/procedural-planet
Source code: https://github.com/pannacotta98/procedural-planet

1Media Technology student, Linköping University, Norrköping

Contents

1 Introduction 1

2 The Planet 1
2.1 Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.5 Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Implementation 3

4 Results 3

5 Discussion and Conclusion 3

1. Introduction
Procedural techniques can be used to generate interesting and
unique worlds, as demonstrated by games such as Minecraft
and No Man’s Sky. Since the release of WebGL in 2011 [1],
many of the tools needed for real-time procedural generation
and rendering is also available on the web. This project aims
to utilize WebGL to procedurally generate a miniature planet
in real-time.

2. The Planet
The scene consists of five distinct parts, each with its own
vertex and fragment shader.

2.1 Surface
The planet’s surface consists of a unit sphere whose surface
is displaced along the radius using layered three-dimensional
noise.

The standard sphere geometry found in most software
libraries is the UV sphere which is created using latitude and
longitude segments. This means that the size of the polygons
varies significantly over the surface of the sphere, as seen in
Figure 1a. This is not suitable for this project since the planet
should ideally have the same level of detail regardless of the
position on the sphere. This planet uses instead the icosphere

(a) UV sphere (b) Icosphere

Figure 1. Sphere geometry comparison.

which is created by subdividing the faces of an icosahedron
and projecting the vertices onto a sphere. As seen in Figure 1
this greatly improves the uniformity of the polygon sizes.

The altitude changes in the surface is modeled in the vertex
shader by sampling multiple octaves of three-dimensional
simplex noise (explained in [2]). The layered noise at the
point x is calculated according to

h(x) =
∑i
[
Ai(

1
2 +

1
2 simplex( fi ·x))

]
∑i Ai

(1)

where Ai is the amplitude, fi is the frequency, and i denotes
the noise layer. The change in amplitude and frequency for
each noise layer is set by two parameters: persistence, and
lacunarity, according to this pattern:

Ai = Ai−1 ·persistence, (2)
fi = fi−1 · lacunarity. (3)

In addition to the normal terrain generation, a “ridge mode”
can be toggled, which then replaces (1) with

h(x) = ∑i [Ai(1−|simplex( fi ·x)|)]
∑i Ai

(4)

where the magnitude of the the noise creates a sharp edge
in the noise, and the inversion places the ridge at the top of

https://pannacotta98.github.io/procedural-planet
https://github.com/pannacotta98/procedural-planet


Procedural Planet Generation — 2/4

the mountains. However, this sharp edge can create some
artifacts, so to avoid this the absolute value is approximated
by a smooth function

smoothAbs(x) = x
ekx

ekx + e−kx − x
e−kx

ekx + e−kx (5)

where higher k gives a result that is closer to |x|.
To achieve flatter fields and steeper mountains, h is mapped

non-linearly according to

g(h) = Hhp (6)

before displacing the sphere surface. The total offset is set by
H and the steepness change is set by p.

A challenge that arises from making these calculations in
the vertex shader is that surface normals cannot be calculated
using adjacent vertices. However, the normals can be approxi-
mated by sampling the height three more times per vertex, at
small offsets along the surface.

First, three points in the tangent plane of the non-perturbed
sphere at the point x are found according to

b1 = x+δ
n× c

∥n× c∥
(7)

b2 = x+δ
b1 ×n

∥b1 ×n∥
(8)

b3 = x−δ
b1 +b2

∥b1 +b2∥
(9)

where n is the non-perturbed normal, c is an arbitrary vector,
and δ is a small offset. Note that b3 is chosen such that the
points create a triangle around the vertex. From these points
the final normal is calculated as

N =
(s2 − s3)× (s1 − s3)

∥(s2 − s3)× (s1 − s3)∥
, (10)

where si are the displaced surface positions of three points
around the vertex:

si = b̂i
(
r+(g◦h)(b̂i)

)
, (11)

where r is the radius of the sphere
The color of the terrain is determined by the distance to

the origin, and the transitions are linearly interpolated to give
a smoother appearance and to avoid aliasing. The application
supports four different color bands: snow, mountains, land,
and sand. The colors of these can be set freely, but the heights
are fixed with respect to the water level.

2.2 Water
The planet has two different water implementations: ocean
waves, and a calmer version. The calmer version consists of
a bump-mapped sphere. The bump map is generated from
three-dimensional psrd noise [3], and animated by rotating
the gradients used in the noise generation. As mentioned in
[3], this is a lot cheaper than slicing through four-dimensional

noise. Furthermore, the noise implementation provides the
analytical gradient g, so the bump mapping is a simple process
that is described in [4]. First the gradient is projected on the
tangent plane,

g⊥n = g− (g ·n)n (12)

where n is the non-perturbed normal. Then the projection is
subtracted from the non-perturbed normal, and the result is
normalized:

N =
Ñ∥∥Ñ
∥∥ , Ñ = n−g⊥n. (13)

The ocean waves is based on the method presented in [5]
which adapts trochoidal waves to spheres. In reality, there is
seldom only one wave, but rather many waves that interact
with each other, thus multiple waves are used to achieve the
desired look. Each wave i is defined by a unit vector oi point-
ing to the origin of the wave, a frequency ωi, a wave speed φi,
an amplitude Ai, and a steepness parameter Qi. The position
with all waves applied is then calculated as

P = vr+v∑
i
(Ai sin(ωili +φit))

+∑
i
(diQiAi cos(ωili +φit))

(14)

where v is the normalized position, r is the radius of the sphere,
and t is the time. Furthermore, di is the direction in which the
wave travels, and li is a re-mapping of the latitude:

di = v× ((v−oi)×v), li = r arccos(v ·oi). (15)

The new normals can then be calculated similarly to the posi-
tion in the following manner:

N = v−v∑
i
(QiAiωi sin(ωili +φit))

−∑
i
(diAiωi cos(ωili +φit)).

(16)

In addition to the waves, the optical properties of water
are also important to achieve the correct appearance. Water
both reflects and refracts light. These properties are tricky
to implement in a real-time graphics environment, and both
refraction and mirror-like reflection have been left out of this
project because of time constraints.

Another important property of water is the Fresnel effect
which describes how the reflection coefficient R depends on
the angle between the observer and the surface, and can be
calculated using Schlick’s approximation [6]:

R = R0 +(1−R0)(1−N ·V)5,

R0 =

(
n1 −n2

n1 +n2

)2

,
(17)

where V is the light direction, N is the surface normal, and
n1 and n2 are the refractive indices of the two media. The



Procedural Planet Generation — 3/4

reflection coefficient is then used to mix between a semi-
transparent diffuse lighting model and a specular one. There
is also the option to use standard Phong shading. Additionally,
the bottom of the sea is shaded darker to simulate light falloff,
with the additional benefit of making the lack of refraction
less noticeable.

2.3 Clouds
The original idea was to use volumetric clouds, but because
of time constraints, the clouds are constrained to the surface
of a sphere. The texture is generated using three-dimensional
flow noise [3]. Flow noise is similar to the layered noise used
to generate the terrain, but it is combined with the rotating
gradients used for the calm water, and a warp in the texture
domain using the gradients of the noise. Mathematically, the
flow noise used in this project is calculated as

h(x) =∑
i

[
Ai psrdnoise

(
si x+w

i−1

∑
k=1

(Akgk), si t

)]
(18)

where si is a scaling parameter, Ai is the amplitude, t is the
(possibly scaled) time, w is a parameter that controls the
amount of warp, and gi is the gradient directly from the noise
function for step i of the outer sum and is provided by the
psrd noise implementation. The first argument to the noise
function is the sampling position, and the second is the gradi-
ent rotation. The scaling doubles each step, and the amplitude
works like in (2). Finally, this noise value is used to set the
opacity of the cloud layer through some simple scaling and
translating. Additionally, the sphere slowly rotates to achieve
some additional motion.

2.4 Atmosphere
To improve the realism of a planet viewed from space, the
atmosphere is important. In reality, atmospheric scattering is
a complicated process where different wavelengths of light
are scattered differently — giving the blue glow that can be
seen when viewing Earth from space. This process can be
simulated, but it is complicated and resource-intensive. This
project takes a simpler approach that aims to fill the same role
as realistic scattering, but not necessarily by emulating it.

The atmosphere is rendered as a semi-transparent sphere
slightly larger than the planetary surface. To emulate some of
the effects present in real atmospheric scattering, some simple
but clever tricks are used.

The opacity for each pixel is set according to a simple
Fresnel term: α = (1−V ·N)a where V is the light direction
and N is the surface normal. This makes the atmosphere trans-
parent when viewed straight on, and opaque when viewed
from a 90◦angle, and the transition in-between is set by the
parameter a.

To illuminate the atmosphere, a wrapped diffuse model is
used. What this means is that the light reaches further around
the surface than it would with normal diffuse shading, which
can be used to emulate subsurface scattering. A simple form

(a) w = 0 (b) w = 0.3 (c) w = 0.7

Figure 2. A white sphere lit from the right using the wrapped
diffuse illumination model.

of this technique, described in [7], is to calculate the wrapped
diffuse light in the following manner:

Id = max
(

0,
(L ·N)+w

1+w

)
(19)

where L is the light direction, and w controls how much the
light is wrapped. For w = 0 the model reduces to traditional
diffuse shading. This effect is shown in Figure 2.

2.5 Stars
The background consists of a procedurally generated star
texture mapped to the inside of a large sphere. The texture is
simply generated by single octave three-dimensional simplex
noise run through a smoothstep function ranging only the very
highest values of the noise.

3. Implementation
The application was implemented in TypeScript with Three.js.
To achieve real-time performance, most of the generation
takes place in the shaders, which are written in GLSL. To
make the application more interesting, the rendered planet
is accompanied by a graphical user interface where many of
the parameters of the planet can be varied. The interface also
contains a few presets to serve as inspiration for the user.

4. Results
The application was tested on two computers: an M1 Mac-
Book Air with 16 GB of unified memory, and a desktop with
a Ryzen 5 2600X, an RTX 2070, and 16 GB of RAM. None
of the tested systems had any trouble keeping up with the
application. The default preset can be seen in Figure 4, and
a few other presets can be seen in Figure 3. The ridge mode
can be seen in Figure 3c and 3e. Figure 5 shows the spherical
trochoidal waves.

5. Discussion and Conclusion
This project successfully demonstrates how a miniature planet
can be generated procedurally with WebGL using various
noise functions. Nonetheless, there are things that could be
improved in almost all parts of the application. Some things
that would be interesting to explore are volumetric clouds and



Procedural Planet Generation — 4/4

(a) (b) (c) (d) (e)

Figure 3. Some presets.

Figure 4. The default preset.

volumetric atmosphere. Furthermore, the terrain exhibits some
artifacts that stem from the fact that the geometrical resolution
is not high enough for the highest octaves of the noise. This
could possibly be solved by rendering the higher octaves
as a bump map rather than a displacement, but that would
complicate the normal calculations so there was not enough
time to try it. A challenge that came with the “miniature
aspect” of the project was that it is hard to set the scales of
different features since there are no real miniature planets to
reference. Furthermore, the trochoidal waves proved very hard
to configure satisfactorily. The waves seemed to always be too
directional, which was a bit disturbing since the waves move
with no regard to the landmasses. In conclusion, the planet is
fairly convincing but could be improved still.

References
[1] Khronos Group, “Khronos releases final webgl 1.0 speci-

fication.” Available at https://khr.io/ba (Accessed
2022-01-07).

Figure 5. Spherical trochoidal waves with different sizes.

[2] S. Gustavson, “Simplex noise demystified,” 2005. Avail-
able at https://weber.itn.liu.se/˜stegu/sim
plexnoise/simplexnoise.pdf.

[3] S. Gustavson and I. McEwan, “Tiling simplex noise and
flow noise in two and three dimensions,” Journal of Com-
puter Graphics Techniques. Not yet published. Pre-
published version available at https://raw.github
usercontent.com/stegu/psrdnoise/main/art

icle/psrdnoise-article.pdf.

[4] S. Gustavson, “Recomputing normals for displacement
and bump mapping, procedural style,” 2021. Available at
https://stegu.github.io/psrdnoise/3d-tut

orial/bumpmapping.pdf.

[5] F. Michelic, “Real-time rendering of procedurally gener-
ated planets,” 2018. Available at https://cescg.org/
wp-content/uploads/2018/04/Michelic-Real

-Time-Rendering-of-Procedurally-Generated-

Planets-2.pdf.

[6] C. Schlick, “An inexpensive BRDF model for physically-
based rendering,” Computer Graphics Forum, vol. 13,
no. 3, pp. 233–246, 1994. Available at https://doi.
org/10.1111/1467-8659.1330233.

[7] S. Green, “Real-time approximations to subsurface scat-
tering,” in GPU Gems — Programming Techniques, Tips
and Tricks for Real-Time Graphics (R. Fernando, ed.),
ch. 16, Addison-Wesley, 2004. Available at https:
//developer.nvidia.com/gpugems/gpugems/p

art-iii-materials/chapter-16-real-time-a

pproximations-subsurface-scattering.

https://khr.io/ba
https://weber.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
https://weber.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
https://raw.githubusercontent.com/stegu/psrdnoise/main/article/psrdnoise-article.pdf
https://raw.githubusercontent.com/stegu/psrdnoise/main/article/psrdnoise-article.pdf
https://raw.githubusercontent.com/stegu/psrdnoise/main/article/psrdnoise-article.pdf
https://stegu.github.io/psrdnoise/3d-tutorial/bumpmapping.pdf
https://stegu.github.io/psrdnoise/3d-tutorial/bumpmapping.pdf
https://cescg.org/wp-content/uploads/2018/04/Michelic-Real-Time-Rendering-of-Procedurally-Generated-Planets-2.pdf
https://cescg.org/wp-content/uploads/2018/04/Michelic-Real-Time-Rendering-of-Procedurally-Generated-Planets-2.pdf
https://cescg.org/wp-content/uploads/2018/04/Michelic-Real-Time-Rendering-of-Procedurally-Generated-Planets-2.pdf
https://cescg.org/wp-content/uploads/2018/04/Michelic-Real-Time-Rendering-of-Procedurally-Generated-Planets-2.pdf
 https://doi.org/10.1111/1467-8659.1330233
 https://doi.org/10.1111/1467-8659.1330233
https://developer.nvidia.com/gpugems/gpugems/part-iii-materials/chapter-16-real-time-approximations-subsurface-scattering
https://developer.nvidia.com/gpugems/gpugems/part-iii-materials/chapter-16-real-time-approximations-subsurface-scattering
https://developer.nvidia.com/gpugems/gpugems/part-iii-materials/chapter-16-real-time-approximations-subsurface-scattering
https://developer.nvidia.com/gpugems/gpugems/part-iii-materials/chapter-16-real-time-approximations-subsurface-scattering

	Introduction
	The Planet
	Surface
	Water
	Clouds
	Atmosphere
	Stars

	Implementation
	Results
	Discussion and Conclusion

