
TNM095 — Artificial Intelligence for Interactive Media
November 4, 2021

Using Neural Networks to Create Art
Algot Sandahl1, David Robı́n Karlsson1, Arvid Magnusson1

Abstract
This paper present an implementation of using deep learning to transfer a style from an image and apply it to
another one. A pretrained convolutional neural network (VGG19) is used where data from certain layers are
extracted to calculate and minimize a combined loss function. The loss function consists of content loss, style
loss and total variation loss. Using Tensorflow to implement the algorithm, a large amount of images with an
arbitrary style applied to them were produced.

Keywords
Convolutional neural networks, Neural style transfer

1Media Technology student, Linköping University, Norrköping

Contents

1 Introduction 1

2 Theory 1

3 Method 2

4 Result 2

5 Discussion 2

6 Conclusion 3

References 3

1. Introduction
Convolutional neural networks and deep learning have be-
come prominent tools in solving modern problems. However,
the networks are more flexible than one could think and could
not only be used to solve problems but also as a tool for artistic
expression. This paper details the theory and implementation
of an artificial intelligence capable of learning the style of an
image and applying it to another, arbitrary image.

2. Theory

Neural style transfer is an optimization technique used to take
three images, a content image, a style image and a generated
image that can be initialized with noise or the content image.
The generated image is then morphed so that it looks like
the content image but “painted” like the style image. This is
achieved using a convolutional neural network (CNN). The
method was originally presented by Gatys, Ecker, and Bethge
in 2015 [1].

A CNN can be used for many tasks, one of them being to
analyze visual imagery. A pre-trained network called VGG19
was used for this project. It was developed for image recogni-
tion and localization tasks. The network consists of 19 layers
and has been trained on the ImageNet dataset which contains

block 1
block 2
block 3
block 4
block 5

generated
image  

 

block 1
block 2
block 3
block 4
block 5

 

block 1
block 2
block 3
block 4
block 5

 

 

style
image  

content
image  

Figure 1. An overview of how the loss function L (p⃗, a⃗, x⃗) is
calculated.

millions of images. For neural style transfer, the output of the
network is of no interest, but rather the intermediate layers.

In order for the network to classify an image, it must
understand it. It does this by taking the image, and through the
layers of the model it builds an understanding of the features
present within the image. So, somewhere in between where
the raw image is fed in and the classification label is output,
the network is able to describe the content and the style of the
image.

The neural style transfer process involves minimizing a
loss function consisting of three parts: style loss, content loss
and total variation loss. An overview of the calculation of the
loss function is shown in figure 1.

Content loss measures the distance between the feature
representations of the content image and the generated image.
Usually only one layer is used for the content loss. The choice
of layer usually falls on one of the latter layers of the network,



Using Neural Networks to Create Art — 2/3

since these represent higher level features as opposed to the
first layers which have a more direct connection to the pixels.

Style loss is more complex but quite similar to content
loss. The distance is computed between two Gram matrices
which acts as style representations of the generated image and
the style image. The Gram matrices themselves represent the
correlation between the different feature maps extracted from
the neural network. This loss is calculated for multiple layers
to capture style features for multiple abstraction levels.

Total variation loss is calculated from the difference be-
tween neighboring pixels in the generated image and is used
to reduce noise by encouraging the generated image to exhibit
piece-wise coherent areas. Our implementation is based on
[2], extended with an internal exponential weight to force the
optimizer to heavily iron out noise.

The loss is used by the optimizer to iteratively update
the genereated image such that it matches the content of the
content image, and the style of the style image. Note that the
weights of the network remain static. Two optimizers based
on stochastic gradient descent were used in this project [3].

The optimizer SGD is based on using momentum to suc-
cessfully navigate troublesome curves commonly found near
local optima, such as steep climbs in one dimension.

The optimizer SGD was used initially but was switched
to another optimizer, Adam, after trials displayed better loss-
minimizing performance. Adam is based on adaptive moment
estimation, an extended version of SGD’s momentum ap-
proach. Adam adapts the learning rates for each parameter
and also incorporates a decaying average of past gradients to
find a better gradient, thus minimizing the loss better.

3. Method
The implementation was done using Tensorflow and Keras.
As stated in the theory chapter, the task is to define three loss
functions and then iteratively transform the input image in
order to minimize those functions as described in [1].

First the images must be preprocessed according to how
the VGG network was trained. The network expects an
image with each channel normalized by the mean values
[103.939,116.779,123.68] and the channels being BGR. In
order to view the correct output after the optimization, the in-
verse of this step should be applied before viewing the image.

The content loss for layer l is defined as

Lcontent(p⃗, x⃗, l) = ∑
i, j

(
F l

i j −Pl
i j

)2
(1)

where Pl and F l are the feature representation at layer l of
the content image p⃗, and the generated image x⃗ respectively.
The index i denotes the filter, and j denotes the position in
the filter. Layer two of the fifth block of the network was
primarily used in this project.

The Gram matrix for the generated image is defined by

Gl
i j = ∑

k
F l

ikF l
jk (2)

where F l is the feature representation at layer l. The distance
between the two gram matrices is defined as

El =
1

4N2
l M2

l
∑
i, j

(
Gl

i j −Al
i j

)2
(3)

where Al
i j is the Gram matrix of the style image, Nl is the

number of feature maps, and Ml is the size of the feature
maps. The style loss function is then defined as

Lstyle(⃗a, x⃗) = ∑
l

wlEl (4)

where wl is a weight which determines each layer’s contribu-
tion to the loss. For this project wl was defined as one divided
by the number of style layers used.

The total variation loss is defined as

Lvar(⃗x) = ∑
i, j

(
(⃗xi+1, j − x⃗i, j)

2 +(⃗xi, j+1 − x⃗i, j)
2)1.25

(5)

where x⃗i, j is a single pixel in the generated image and the
exponent 1.25 is the exponential weight used to amplify loss
in a noisy generated image.

Finally, the total loss function is defined as a weighted
sum of the individual loss functions:

L (p⃗, a⃗, x⃗) =αLcontent(p⃗, x⃗)

+βLstyle(⃗a, x⃗)

+γLvar(⃗x)
(6)

where α , β and γ are weights for each separate loss function.

4. Result
An example of a generated image together with the content
and style images can be seen in figure 2. The role different
layers play in style loss is demonstrated in figure 3. The effect
of the total variation weight γ is exemplified in figure 4.

5. Discussion
The method of optimizing the neural network for each indi-
vidual content and style image on every render is a compu-
tationally intensive task. While a high-end GPU can finish
the task in around ten minutes, this approach is not viable for
consumer electronics such as smartphones or laptops. There
is a solution to this which requires a fundamental redesign
of the current workflow. A network can be trained to learn a
particular style which would allow near or true real-time ap-
plication of the style to an image. This could be used to style
video sequences, live streams and real time camera filters.

An issue that surfaced during the development of the algo-
rithm is the tuning of different parameters. Although a lot of
parameters, such as learning- or decay rate for the optimizer,
can be somewhat intuitively tuned with good knowledge of
the theory behind it, some parameters require a trial and error
approach. The loss weights α , β and γ were tuned using this



Using Neural Networks to Create Art — 3/3

Figure 2. Norrköping city library in the style of The Scream.

approach which prolonged development time as a trial of new
parameter settings required at least ten minutes of render time
to evaluate. The results themselves are not always straightfor-
ward to interpret either since it might be difficult to discern
which loss weight contributed to what in the final image. This
is a classic issue in neural networks since knowing what a net-
work actually does in the hidden layers is nearly impossible,
therefore it’s hard to debug certain parts of algorithms using
neural networks.

In addition to the weights α , β , and γ , the layers used
in the calculations also affect the result. As seen in figure 3,
the lower layers ensure that the color and texture of the style
image is matched, while the higher layers match higher level
style features, in this example the waves.

6. Conclusion
While being a computationally laborious task, style transfer
using deep learning in neural networks can be used to generate
great results. The technology has potential for commonplace
usage in consumer applications.

References
[1] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algo-

rithm of artistic style,” CoRR, vol. abs/1508.06576, 2015.

Figure 3. The effect of layer choice on style reconstruction.
The first image is the style image and the following images
are style reconstructions (α = γ = 0) using the first layer of
blocks [1], [1, 2, 3], and [1, 2, 3, 4, 5].

Figure 4. A demonstration of different amounts of total
variation loss used. The first image uses no total variation loss
(γ = 0) and the rest of the images use increasing amounts.

[2] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total
variation based noise removal algorithms,” Physica D:
Nonlinear Phenomena, vol. 60, no. 1, pp. 259–268, 1992.

[3] S. Ruder, “An overview of gradient descent optimization
algorithms,” CoRR, vol. abs/1609.04747, 2016.


	Introduction
	Theory
	Method
	Result
	Discussion
	Conclusion
	References

